Транспортные системы

Всё об автомобильном, ЖД и авиатранспорте в России

Железнодорожный транспорт

Электрификация 

 

 

 

Развитие электрической тяги неразрывно связано с развитием учения об электричестве. Возникновению электротехники предшествовал длитель­ный период накопления знаний о природе электричества и магнетизма. Исследо­ваниями явления электричества активно занимались такие великие ученые, как    М.  В. Ломоносов    (1711–1765 гг.),    Г.  В.  Рихман   (1711–1753 гг.), Б. Франклин (1706–1790 гг.), Ш. Кулон (1736–1806 гг.) и др.

М. В. Ломоносов, продолжая работы Р. Бойля и Д. Бернулли, глубоко изучал сущность и природу электрических явлений. Громад­ное значение для прогресса учения об электрических и магнитных явлениях имело установление М. В. Ломоносовым закона сохранения энергии, положив­шего начало учению об энергетике, объединившего в единый комплекс такие различные виды энергии, как механическая, электрическая, тепловая и др.

Б. Франклин, наряду с проблемами метео­рологии, широко известен своими работами в области взаимодействия электри­ческих зарядов. Он дал ясную картину электризации тел, основываясь на представлении электрической материи как частиц крайне малых, которые прони­зывают любое вещество, не испытывая при этом заметного сопротивления. В наши дни мы эти частицы называем электронами. Он ввел обозначения "+" и "–" для электродов различной полярности. Франклин предложил такие устройства, как молниеотвод, "электри­ческое колесо", использовал электрическую искру для взрыва пороха и др. После работ Франклина наиболее крупным этапом развития науки об электричестве был переход к количественному описанию электрических явлений. Это было впервые сделано Ш. Кулоном в 1785 г. Он сформулировал закон взаимо­действия электрических зарядов и магнитных полюсов, показал, что электри­ческие заряды располагаются всегда на поверхности проводника и т. п.

Началом новой эпохи в изучении электрических явлений явилась дискуссия о природе электричества, возникшая между Л. Гальвани и А. Вольта, получившая широкий резонанс в ученом мире.

Л. Гальвани (1737–1798 гг.), основатель учения об электрофизиологии, преподавая медицину в Болонском университете, обратил внимание на то, что мышца лягушки сокращается при присоединении ее к двум разным металлам. Он назвал это явление "живым" электричеством. В 1791 г. А. Воль­та (1745–1827 гг.), профессор университета в Павии, начал изучать явления "живого" электричества, открытого Гальвани. Однако Вольта убедился на опытах, что никакого "живого" электричества не существует. Он первым понял, что Гальвани открыл новый источник электричества – электрохимический элемент. Истинный источник электричества – контакт разнородных металлов, на­пример серебра и цинка. Поэтому он предложил название "металлическое" электричество.

Однако оба исследователя были правы. Теперь мы знаем, что существует электричество статическое, обусловленное взаимодействием покоящихся на поверхности проводников электрических зарядов, и электричест­во, обусловленное взаимодействием различных металлов.  Отсюда получили свое название, например, "гальванический" ток, полу­чаемый от электрических батарей, приборы гальванометры, "вольтов столб", составленный из гальванических элементов, и т. п. В таких элементах источ­ником энергии, поддерживающей прохождение тока в электрической цепи, являются происходящие при этом химические превращения в элементах.

Именем Вольты была названа электрическая дуга, которую сам Вольта не получал и даже не видел. Честь открытия электрической дуги принадлежит В. В. Петрову (1761–1834 гг.), профессору Петербургской медико-хирургической академии, впоследствии академику Петербургской Академии Наук (1802 г.),  научные труды которого, опережая время, остались малоизвестными. В начале 1802 г. он получил электрическую дугу между двумя углями на расстоянии от 2,5 до 7,5 мм. Его батарея превосходила все известные к тому времени:  1700 элементов, расположенных в деревянных ящиках длиной 12 м, изолирован­ных воском. Именно он впервые применил наряду с последовательным и парал­лельное соединение элементов. Теперь это кажется простым, но надо помнить, что в то время еще не были известны ни закон Ампера, ни закон Ома и т. д.

С именем М. Фарадея (1791–1867 гг.) связано установление многих зако­нов электротехники. Он ввел понятие электрического и магнитного полей, уста­новил связь между ними, открыл явление индукции, лежащее теперь в основе электротехники. Продолжая и развивая работы Фарадея, Д. Максвелл (1831–1879 гг.) разра­ботал классическую теорию электрических и магнитных полей.

Трудно переоценить научный вклад отечественных и зарубежных ученых того времени в развитие науки об электричестве.

Одновременно с изучением природы электрического тока шло совершенствование способов его получения. Примитивные гальванические батареи были посте­пенно заменены электрическими динамомашинами. Наряду с постоянным током, получаемым от гальванических батарей, появился однофазный переменный ток, вырабатываемый электромагнитными генераторами, а затем и трехфазный.

Все эти достижения относятся ко второй половине XIX в., когда быстро развивающаяся промышленность требовала все больше энергии. Снабжение заводов и фабрик энергией от паровых и гидравлических двигателей с помощью ременных и канатных передач уже не удовлетворяло запросов промышленности, поэтому начались поиски и разработки, во-первых, источников энергии, работающих на новых принципах, и, во-вторых, поиски практических путей передачи этой энергии на большие расстояния, так как сооружать электрические станции было выгодным не в местах потребления вырабатываемой ими энергии, а в районах добычи топлива, обычно далеко отстоящих от промышленных центров.

Характерной чертой технического прогресса в конце XIX – начале XX в. яви­лось быстрое развитие электротехнической промышленности.