Транспортные системы

Всё об автомобильном, ЖД и авиатранспорте в России

Городской транспорт

ГОРОДСКОЙ ТРАНСПОРТ

 

История развития городского пассажирского транспорта (ГПТ)

 

В истории развития ГПТ различаются периоды: конной, паровой и электрической тяги, автомобилизации и возрождения массового пассажирского транспорта в условиях научно-технической революции с внедрением электронной техники и автоматизации.

Период конной тяги, начавшийся в последней четверти XVIII в., продолжался примерно до середины XIX в. Лошадь использовалась человеком еще в глубокой древности для верховой езды, конных боевых колесниц и других целей. Примерно во второй половине XVII в. было организовано регулярное движение конных повозок как средств междугородного транспорта. По мере роста городов возникла необходимость и во внутригородском пассажирском транспорте, который и появился примерно в последней четверти XVIII в. Пассажиропотоки в городах того времени были еще малы. Для перевозки пассажиров использовались кареты, затем появились 10 –20-местные дилижансы, омнибусы, линейки. Дилижансы и омнибусы представляли собой конструктивно усиленные повозки больших размеров. В частности, омнибусы были двухэтажными, имели открытый второй этаж – "империал", проезд в котором стоил немного дешевле, чем внутри кузова.

Линейка, или "волчок", приведена на рисунке 7.1. Она представляла собой как бы сдвоенную скамью, на которой размещались в два ряда 10 – 14 пассажиров.

clip_image002

В середине XIX в. (1853 г – в Нью-Йорке, 1864 г. – в Петербурге, 1872 г. – в Москве и т. д.) появились первые конные железные дороги – конки. Появление конок – следствие первого в истории транспортного кризиса, явившегося результатом быстрого роста городов в связи с развитием капитализма.

Если в начале XIX в. во всем мире не было городов с населением в 1 млн человек, то уже в серединеXIX в.насчитывалось более 2 млн в Лондоне, более 1,5 млн – в Париже, около 0,5 млн

населения – в Нью-Йорке, Петербурге, Вене, Берлине и других городах. Пассажиропотоки в этих городах были уже внушительными и обычный конный ГПТ с ними не справлялся.

Быстрое развитие конных железных дорог связано с преимуществами рельсового транспорта перед безрельсовым – более плавным ходом и примерно в три раза меньшим сопротивлением движению. Благодаря этому рельсовые колесные экипажи можно было делать примерно вдвое большей вместимости по сравнению с безрельсовыми.

Конки вмещали около 40 пассажиров, обеспечивали скорость сообщения 810 км/ч, сравни­тельно высокую по тем временам комфортабельность проезда и регулярность движения. Длина вагонов конок составляла 4–8 м, ширина – 1,8–2 м. Крытые вагоны имели "империал" – плоскую крышу, при­способленную для перевозки пассажиров. Общий вид конки с "империалом" показан на рисунке 7.2.

clip_image004

Однако появление конки позволило незначительно разрешить тран­спортную проблему крупных городов. Пассажиропоток, использующий конные экипажи, требовал больших площадей улиц, так как удельная площадь проезжей части, приходящаяся на одного пассажира конного экипажа, вследствие его небольшой пассажировместимости была срав­нительно велика – примерно в 10 раз превышала удельную площадь улицы, приходящуюся на одного пассажира современного трамвайного вагона. В результате узкие улицы крупнейших городов второй половины ХХ в. оказались перегруженными конным транспортом.

В связи с этим были предприняты попытки применения на город­ском транспорте паровой тяги, к тому времени уже известной на же­лезнодорожном транспорте. В целях разгрузки перегруженных уличных транспортных магистралей первые городские железные дороги с паровой тягой, появившиеся в середине XIX в.

в Англии, были проложены в Лондоне вне уличной сети в подземном уровне – в тоннелях. Они получили права обычных железных дорог и название Metropolitan Rail-Way, т. е. столичной железной дороги.

Название "метрополитен" стало потом нарицательным для всех внеуличных городских железных дорог сначала с паровой, а затем и с электрической тягой. Вслед за Лон­доном (1863) в последней четверти XIX в. появились метрополитены в Берлине (1872), в Нью-Йорке (1878) и других столичных городах. Линии метрополитена Берлина были проложены на насыпи, в Нью-Йорке – на эстакадах.

 


Первые трамваи

Почти одновременно с метрополитенами появились и первые уличные железные дороги с паровой тягой. Они были созданы в Лондоне изобретателем и предпринимателем О. Tram и получили название Tram-Way (дороги Трэма). Название "трамвай" стало потом нарица­тельным для всех уличных городских железных дорог – сначала с паро­вой, а затем и с электрической тягой. В Москве паровая узкоколейная железная дорога от Бутырской заставы до Тимирязевской академии (Петровско-Разумовское) была заменена электрическим трамваем толь­ко после Октябрьской революции.

clip_image006

Общий вид одного из первых паровых трамваев – "паровичков" – показан на рисунке 7.3, который затем конструк­тивно совершенствовался. На рисунке 7.4 показан паровой трамвай на улицах Петербурга. Он уже конструктивно близок к первым трамваям с электрической тягой.

Рисунок 7.3 – Первый паровой трамвай

Паровая тяга по сравнению с конной отличалась более высокой экономичностью и провозной способностью. Паровичок мог тянуть за собой несколько вагонов. Однако появление паровых городских железных дорог объясняется только тем, что во второй половине XIX в. не знали еще других видов тяги, способных решить транспортную проб­лему больших городов.

clip_image008

Рисунок 7.4 – Паровой трамвай на улицах Петербурга

Паровички сильно загрязняли воздух, были по­жароопасны и имели низкие динамические показатели (ускорение при пуске и скорость движения). Особенно неблагоприят-ные условия созда­вались при использовании их на линиях подземных метрополитенов вследствие трудностей вентиляции тоннелей. Поэтому после изобрете­ния вращающихся электрических машин и методов передачи электриче­ской энергии на расстояние были предприняты попытки использования их для целей тяги.

Период электрической тяги начался в конце XIX в. и получил наиболь­шее развитие в первой четверти XX в. На электрическую тягу начали переводить трамваи и метрополитены, появились первые троллейбусы и электропоезда. Один из первых трамвайных вагонов с питанием от контактного провода показан на рисунке 7.5.

Рисунок 7.5 – Первый трамвайный вагон

с питанием от контактного провода

clip_image010

Внешне он мало отличался от конки и имел всего 12 сидячих мест, приводился в движение одним тяговым электродвигателем (ТЭД) мощностью 4,5 л. с. (3,3 кВт) с ремен­ной передачей вращающего момента на движущие колеса (колесную пару) и управлялся силовым контроллером, установленным на площадке.

Токосъём с контактного провода производился специальной токосъемной кареткой, соединенной с вагоном гибким тросом. Позднее появились более совершенные токоприемники – сначала дуговой, а затем и пантографный. Тяговые электродвигатели были установлены на всех осях моторных вагонов, а ременная передача заменена более надежной зубчатой. Электроснабжение первых трамваев осуществлялось централизованно от собствен­ных электрических станций. Затем они были переведены на питаниеотгородских энергосистем через тяговые преобразовательные подстанции. Первый в России электрический трамвай был пущен в 1892 г. в Киеве, затем в 1894 г. – в Казани, 1896 г. – в Нижнем Новгороде, 1897 г. – в Екатеринославле и Курске, 1898 г. – в Орле и Севастополе, 1899 г. – в Москве и других городах. Всего в период до 1917 года в России было 35 трамвайных предприятий. Электрическая тяга намного экономичней и гигиеничней паровой и позволяет создавать мощный подвижной состав большой вместимости с высокими динамическими показателями.

clip_image012

На рисунке 7.6 показан внешний вид трамвайного вагона РВЗ-7 с тиристорно-импульсной системой управления. Его технические данные: длина кузова по наружной обшивке – 15,09 м, ширина – 2,62 м, высота от головок рель-сов до верхней точки обшивки крыши – 3,02 м, высота пола пассажирского салона от головок рельсов – 830 мм, нормальная вместимость – 126 пассажиров, макси-мальная – 219 пассажиров, суммарная часо-вая мощность ТЭД – 55 · 4 = 220 кВт, кон-структивная скорость – 75 км/ч, масса без пассажиров – 18,87 т.

Рисунок 7.6 – Общий вид

трамвайного вагона РВЗ-7

В Белоруссии использование городского электрического транспорта началось в 1898 году с открытия первой трамвайной линии в г. Витебске. В 1929 году трамвайное движение стало налаживаться и в Минске.

 


Развития метрополитенов

Появление электрической тяги коренным образом расширило и перспективы развития метрополитенов. Перевод их с паровой тяги на электрическую значительно улучшил санитарное состояние станций и тоннелей, позволил повысить скорость движения поездов и увеличить глубину заложения тоннелей, так как электрическая тяга исключает необходимость усиленной вентиляции. В свою очередь, глубокое заложение тоннелей обеспечило возможность наиболее удобной трассировки линий метрополитенов

независимо от уличной сети. Первый метрополитен в странах СНГ был открыт в Москве в 1935 году. По своим техническим и эстетическим показателям он по праву считается лучшим в мире. В настоящее время в странах СНГ уже действуют метрополитены в 12 городах: Москве, Ленинграде, Киеве, Минске, Харькове и других.

clip_image014

Hа рисунке 7.7 показан общий вид вагона метрополитена типа Е. Его технические данные: длина кузова по осям автосцепок – 18, 77 м, ширина кузова – 2,7 м, высота вагона – 3, 695 м, мест для сидения – 44, максимальная вместимость – 270 пассажиров, суммарная мощность ТЭД (4 ТЭД по одному на каждую ось) – 4·64 = 256 кВт, конструктивная скорость – 90 км/ч, собственная масса без пассажиров – 30, 6 т.

Рисунок 7.7 – Вагон метрополитена типа Е

 


Создание троллебусов

В 1882 г. в Германии на пригородной линии Берлин – Шпандау появился первый опытный образец безрельсового экипажа с электри­ческим двигателем, получающим питание от контактных проводов, – прообраз троллейбуса. Долгое время троллейбус не имел широкого распространения, что было связано главным образом с недостатками токосъема через токосъемные каретки и сменивший его позднее роликовый штанговый токоприемник. Развитие троллейбусов началось в Англии и Чехословакии после изобретения троллейбусных токосъемных штанг с роликовым, а позднее со скользящим контактом, обеспечивших более высокую надежность токосъема при достаточно высоких скоростях движения.

Как и другие виды электрического транспорта, он не загрязняет атмосферы городов, имеет высокие динамические показатели, отличается простотой тягового электрооборудования, а централизованное электроснабжение позволило создавать троллейбусы большой вместимости. Кроме того, троллейбус отличается значительно меньшими капиталовложениями и большей маневренностью по сравнению с трамваем и метрополитеном, меньше загромождает улицы, больше отвечает архитектурно-градостроительным требованиям. Все эти преимущества дали возможность использовать троллейбусы как одно из основных средств ГПТ, особенно в городских центрах, где к ГПТ предъявляются особенно высокие архитектурно-градостроительные требования.

В царской России троллейбусов не было. Первый трол­лейбус появился на улицах Москвы в 1933 году. В настоящее время в СНГ троллейбусный транспорт имеют около 160 городов.

clip_image016

Наиболее массовым троллейбусом, эксплуатировавшимся на территории бывшего СССР, был троллейбус ЗИУ-9 (рисунок 7.8). Его технические данные: габаритная длина – 11,82 м, габаритная ширина кузова – 2,5 м, высота с опущенными токоприемниками – 3,347 м, мест для сидения – 31, максимальная вместимость – 126 пассажиров, максимальная ско-рость движения – 55 км/ч, мощность ТЭД – 110 кВт.

Рисунок 7.8 – Троллейбус ЗИУ-9Б

Первая очередь троллейбусной линии в Белоруссии была проложена в 1952 году от пассажирского вокзала до площади Победы г. Минска. Позже троллейбусное движение

было открыто в Гомеле, Могилеве, Витебске, Бресте, Гродно и Бобруйске. Широкое использование троллейбусного транспорта в городах Белоруссии потребовало и создания соответствующей ремонтной базы. В связи с этим в 1973 году был введен в эксплуатацию ремонтный трамвайно-троллейбусный завод, впоследствии переименованный в Минский ремонтно-механический завод "Белремкоммунмаш".

Для обеспечения Республики Беларусь троллейбусным транспортом на заводе получили развитие научно-исследовательские и опытно-конструкторские работы, нацеленные на создание новых конструкций троллейбусов. В 1994 году здесь изготовили первые опытные образцы двухосных троллейбусов модели 101, а в 1996 году – модели 201 (рисунок 7.9).

clip_image018

Преимущества электрической тяги перед всеми другими видами тяги остаются и в настоящее время, что обеспечивает ей большие перспективы дальней-шего развития.

Рисунок 7.9 – Троллейбус модели 201

Период развития автомобиль-ного транспорта с двигателями внутреннего сгорания (ДВС) или, как его называют, период авто- мобилизации, начался в 20-х годах XX столетия, но ее темпы, за исключением США, были в то время еще невысокими.


 

Массовое развитие автомобилизации началось в 50-х годах и продолжается в настоящее время.

Автомобиль как средство индивидуального транспорта имеет по сравнению с другими видами ГПТ ряд преимуществ: он обеспечивает возможность беспересадочной поездки с минимальными затратами времени, отличается высоким уровнем транспортного комфорта. Современ­ные автомобили имеют высокие динамические показатели – ускорения при пуске, замедления при торможении, максимальную скорость движе­ния до 200 км/ч. Благодаря этим преимуществам автомобиль завоевал и продолжает завоевывать современные города. Ожидаемый уровень автомобилизации США составит в перспективе более 700 автомобилей на 1000 жителей.

Пропускная способность город­ских магистралей большинства столичных и других крупных городов Запада вследствие автомобильного бума уже исчерпана, что привело к резкому ухудшению общего транспортного обслуживания населения. Сначала автомобиль появился на городских улицах, которые затем превратились в автострады. Но потокам автомобилей стало тесно и здесь, тогда появились суперавтострады. Автодороги строят в несколько ярусов, их площадь, например, в Лос-Анжелесе составляет 2/3 общей площади городской застройки. Скорость автомобильного потока в часы пик нередко падает до 4 – 5 км/ч (скорость пешехода).

В Бостоне, напри­мер, организовали соревнование: 25 велосипедистов и 25 автомобилей стартовали на 10 миль (16 км) по обычному весьма забитому транспор­том городскому маршруту. Со счетом 23:2 победили велосипедисты! Велосипед при всей своей простоте и дешевизне в условиях современного крупного города не только становится конкурентоспособным с легко­вым автомобилем по обеспечиваемой скорости сообщения, но и избав­ляет людей, ведущих малоподвижный образ жизни, от гипокинеза – болезни, связанной с недостатком подвижности. Отсюда его широкое распространение и противопоставление автомобилю. В Японии и США велосипедом пользуется каждый третий житель, в Голландии – каждый второй.

В связи с нарастающей автомобилизацией за рубежом растет число дорожно-транспортных происшествий (ДТП). Автомобиль стал одним из самых опасных средств транспорта, а автомобильные катастрофы превратились в подлинное бедствие человечества. Ежегодно в ДТП гибнут сотни тысяч людей, десятки миллионов становятся инвалидами, государства терпят материальный ущерб, исчисляемый миллиардами долларов. На автодорогах США, например, ежегодно в ДТП погибает более 50 тыс. человек, более 1,5 млн человек получают увечья различной степени тяжести, а материальные убытки, связанные с ДТП, превы­шают 10 млрд долл. Темпы ежегодного роста количества ДТП в не­сколько раз превышают темпы прироста населения.

В результате скопления огромных масс автомобилей крупные города задыхаются от токсических выделений автотранспорта. В без­ветренную погоду с туманом над ними нависают облака смога, создаю­щие реальную угрозу жизни городского населения. Облако смога над Нью-Йорком видно с самолета на расстоянии 240км. В декабре 1952 года от смога в Лондоне за несколько дней погибло более 4 тыс. человек, в 1963 г. в Нью-Йорке – около 400человек. Подобные же явления отмечались и в других крупных городах – Сан-Франциско, Лос-Анжелесе, Токио.

Создаются специальные вертолетные службы оповещения населения о приближении смога. Полицейские регулируют уличное движение в кислородных масках. В Токио на центральных магистралях наподобие заправочных станций установлены автоматы с кислородными балло­нами. Во время смога пешеходы, переходя от автомата к автомату, просовывают в них 25-йеновые монетки и торопливо дышат кислородом. Реальная картина становится созвучной с фантазией, описанной фантастом Беляевым в рассказе "Продавец воздуха".

В результате нерегулируемой автомобилизации ГМПТ промышленно развитых стран вступил в период хронического кризиса: начиная с 40-х годов он непрерывно теряет пассажиров и по­степенно свертывается. В настоящее время легковыми автомобилями выполняется около 90 % городских пассажироперевозок в США и около 70 % в Англии и Франции. В небольших городах США ГМПТ практически отсутствует, там 100 % пассажироперевозок выполняется легковыми автомобилями.

 

 


Виды городского транспорта

 

Городское движение разнородно. Его составляют пешеходные и транспортные потоки различного назначения. В целях безопасности движения и повышения эффективности использования площадей город­ских проездов их разделяют в пространстве города и направляют по специально отведенным территориям: тротуарам, полосам проезжей части улиц, искусственным надземным сооружениям (мостам, эстака­дам) или подземным сооружениям (тоннелям).

По назначению городской транспорт разделяют на пассажирский, грузовой и специальный. Классификационная схема городского транспорта (ГТ) показана на рисунке 7.10 .

Городской пассажирский транспорт (ГПТ). Предназначен для перевозки населения в городской и прилегающей к ней зоне по различным целям: трудовым, деловым, общественным или культурно-бытовым. Объекты, определяющие цели передвижения городского населения (пред­приятия, театры, бытовые учреждения и др.), называют центрами тран­спортного тяготения.

 

По вместимости транспортных средств ГПТ подразделяют:

· на индивидуальный пассажирский транспорт (ИПТ) – легковые автомобили, мотоциклы, велосипеды;

· массовый или общественный городской пассажирский транспорт (МПТ, ГМПТ) – трамвай, троллейбус, автобус, метрополитен, городские железные дороги, речной трамвай и др.

Для повышения качества обслуживания пассажиров городской пассажирский транспорт оборудуется специальными устройствами (рисунок 7.11).

Индивидуальный пассажирский транспорт характеризуется вместимостью порядка 1–8 человек, общественный (массовый) пассажирский транспорт – вместимостью от 18–20 до 200–230 человек и более.

clip_image021

Рисунок 7.11 – Оборудование городского автобуса устройством

для посадки и высадки инвалидов

По системе организации движения ГПТ подразделяют на маршрут­ный и немаршрутный. Движение транспортных средств маршрутного ГПТ организуют по определенным направлениям – маршрутам, обо­рудованным посадочными площадками, павильонами и маршрутными указателями для пассажиров. Движение транспортных средств немар­шрутного ГПТ организуют на проезжей части улиц по системе свободного движения в пределах ограничений, накладываемых дорожными знаками, разметкой проезжей части и светофорной сигнализацией. В основном все виды современного МПТ работают по маршрутному принципу, а средства ИПТ – по системе свободного движения. Исклю­чение составляют только маршрутные такси, которые по вместимости близки к ИПТ, а по организации движения – к МПТ.

Грузовой городской транспорт (ГГТ). Выполняет городские грузо­вые перевозки промышленного, коммунального и бытового назначения. В грузовом городском движении преобладают грузовые автомобили грузоподъемностью 2–25 т, а также (в меньшей степени) трамваи и троллейбусы, железнодорожный и водный транспорт. По системе орга­низации движения ГГТ, как и ГПТ, подразделяют на маршрутный и немаршрутный. Маршрутную систему организации движения ГГТ применяют на направлениях постоянных грузопотоков, немаршрутную – при организации грузоперевозок в различные адреса по временным заявкам и заказам.

Доля ГГТ в общем городском движении современных городов отно­сительно невелика (≈ 1/3 против 2/3 движения ГПТ). Однако в различ­ных городах доля грузового движения может быть самой различной. В движении ГПТ преобладает легковой автотранспорт (до 95 % общего размера движения), основную долю которого составляют легковые авто­машины личного пользования и меньшую – таксомоторы (такси) и ведомственные втомобили. На долю МПТ приходится менее 5 % общего объема движения. В Москве, например, по данным обследований 1970 г., удельный вес легковых автомобилей в общем по­токе движения составил 59 %, мотоциклов и мотороллеров – 3 %, грузо­вых автомобилей – 35 %, автобусов и троллейбусов – 3 %. Однако не­смотря на такой небольшой удельный вес в общей величине городского движения, ГМПТ осваивает огромные пассажироперевозки.

Специальный городской транспорт (СГТ). Включает в себя транспор­тные средства городского благоустройства (ТГБ – поливальщики улиц, мусоро- и снегоуборочные машины, специальные машины по ремонту дорожных покрытий), санитарного транспорта скорой медицинской по­мощи и помощи на дому (ТМП), транспорта торговой сети (ТТС – спе­циализированные автомашины «хлеб», «молоко», «мебель», «доставка продуктов на дом» и др.), пожарного автотранспорта (ПАТ), автотран­спорта Отдела регулирования уличного движения Управления внутрен­них дел – (ОРУД), автотранспорт скорой технической помощи (ТСТП) и др. Доля этих видов транспорта в общегородском движении составляет обычно незначительную часть.

Для маршрутного ГПТ характерно движение по расписанию, т. е. регламентированное во времени и городском пространстве. Для осталь­ных видов ГПТ и ГГТ движение или совсем не регламентируется во вре­мени и пространстве (кроме ограничений, накладываемых разметкой проезжей части улиц, дорожными знаками и светофорной сигнализацией) или определенный объем таких регламентных ограничений дви­жения задается (например, для маршрутного грузового транспорта), но он менее строг, чем на маршрутном ГПТ. Поэтому принципы органи­зации движения маршрутного ГПТ резко отличаются от организации движения остального городского транспорта. В первом случае они осу­ществляются методом контроля за движением каждого отдельного поезда, во втором – методом контроля за движением транспортных потоков с делением их на грузовое и легковое движение по составу и прямое, правоповоротное и левоповоротное по направлению ожидаемого движения на перекрестках. При небольшой интенсивности грузовое и легковое движение часто даже и не разделяют.


Техническая база ГПТ

 

clip_image023

Рисунок 7.12 – Оборудование городского

остановочного пункта

Состав основных элементов систем ГПТ определяется видом ис­пользуемых в них транспортных средств – подвижного состава. В целом же системы ГПТ представляют собой сложные многоотраслевые хо­зяйства, основными элементами которых являются подвижной состав (ПС), путевые сооружения и устройства (рисунок 7.12.), сооружения и устройства для хранения, технического обслу-живания и ремонта подвиж-ного соста­ва (Д), сооружения и устройства энергоснабжения (обеспе-чения энер­гией) подвижного состава для выпол-нения транспортной работы (Э) и устройства организации движения подвижного состава на линии (ОД).

Особенности города определяют характеристики требующейся для него транспортной системы ГПТ и оказывают влияние на выбор видов транспорта, транспортных сооружений и системы организации движения.

Основной элемент любых транспортных систем – подвижной со­став. По виду подвижного состава различают рельсовый и безрельсовый ГПТ.

Безрельсовым называют подвижной состав с колесной ходовой частью и пневматическими колесами, предназначенный для движения по обычным дорожным покрытиям без специальных путевых направ­ляющих устройств (автобусы, троллейбусы и легковые автомобили).

Автобус– безрельсовый уличный вид транспорта с автономным энергоснабжением. Энергия, необходимая для движения автобусов, вырабатывается из запасов горючего (бензин, нефть, дизельное или твер­дое топливо), которые вместе с силовой установкой находятся на авто­бусе. Это определяет автономность автобусов, их высокую маневрен­ность и в то же время пониженные весовые характеристики. Автобусы не требуют сооружения специальных путевых устройств, их движение, как и троллейбусов, организуют по обычному дорожному полотну городских улиц. В связи с этим автобус требует небольших затрат в транспортную сеть, которые ограничиваются по существу капитало­вложениями на сооружение станций заправки, конечных станций маршру­тов и устройство остановочных пунктов. Высокая маневренность автобу­са обеспечивает возможность легкого изменения его транспортной сети и маршрутной системы в соответствии с сезонным, недельным и даже суточным колебанием пассажиропотоков. Поэтому автобусы обслужи­вают районы новой жилой застройки. Автобусы легко направлять с маршрута на маршрут в соответствии с изменением пассажиропотоков. Это преимущество широко используют для организации пассажироперевозок в районах, где заблаговременно не подготовлен троллейбус или трамвай. Автобус находит широкое применение для городских пассажироперевозок мелких городов как основной вид транспорта на маршрутах со сравнительно небольшими пассажиропотоками и круп­ных городов – как вспомогательный на подвозящих и развозящих маршрутах. В странах СНГ автобусное обслуживание имеют около 2000 горо­дов, подвижной состав которых превышает 60 тыс. машин. В США, Англии, Франции и других странах системы МПТ организуют в ряде случаев исключительно на базе автобусов.

Главные недостатки автобусов с двигателями внутреннего сгора­ния – загрязнение атмосферы продуктами сгорания автомобильных топлив, сравнительно низкая провозная способность и высокие уровни шума. Дефицитность нефтепродуктов увеличивает себестоимость автобусных перевозок и требует совершенствования автомобильных двигателей. Провозная способность автобусов ниже провозной способности трамвая. Перспективным считают освоение ав­тобусом пассажиропотоков до 6 – 8 тыс. пас./ч (в одном направлении движения), которые при минимально допустимом интервале движения в 1 мин (интенсивности движения 60 машин/ч) требуют использования автобусов особо большой вместимости до 100 – 140 пассажиров. Обыч­ные автобусы большой вместимости (70 – 80 пассажиромест при нормальном наполнении) осваивают пассажиропоток до 4,2 – 4,8 тыс. пас./ч (в одном направлении движения), средней (40 – 50 мест) – 2,4–3,0 тыс. пас./ч, малой (25–30 мест) – 1,5–1,8 тыс. пас./ч и особо малой вместимости (10–12 мест) до 0,6–0,7 тыс. пас./ч (в одном направлении движения).

В настоящее время наблюдается значительный рост автобусных пассажироперевозок особенно для городов с населением менее 250 тыс. жителей.

Рисунок 7.13 – Автобус "Икарус-180"

clip_image025

Во многих городах Республики Беларусь эксплуатируются шарнирно-сочлененные автобусы, например "Икарус" (рисунок 7.13) венгер-ского производства, но их недостаточно. По-этому для обеспечения потребности в автобу-сах Минский автомо-бильный завод освоил производство собственных городских ав-тобусов МАЗ-101 (рисунок 7.14). Автобус

внешне очень эффектен. Как перед пассажирами, так и перед водителем открывается великолепный обзор – благодаря большой площади остекления кузова. Моторный отсек кузова автобуса позволяет разместить двигатели различных моторостроительных фирм. На данный момент автобус оснащается двигателями ММЗ, ЯМЗ, Рено и МАН.

clip_image027

Основные проблемы авто-бусостроения в настоящее время: повышение конст-руктивного уровня отечест-венных автобусов, их ком-фортабельности, технико-эксплуатационных качеств и надежно­сти (особенно в зимнее время), снижение токсичности.

Рисунок 7.14 – Автобус МАЗ-101

Различают автобусы одно-этажные (наиболее часто применяемые), полутора- и двухэтажные (их используют в Англии и некоторых других странах с целью повышения провозной способности при ограниченной пропускной способности городских улиц, для уменьшения удельной нормы площади, занимаемой пассажирами на проезжей части). Последние более громоздки, уступают одноэтажным по комфортабельности и менее устойчивы, но экономичнее одноэтажных благодаря более высокой вместимости и, следовательно, объему пассажироперевозок в расчете на одного водителя.

Шарнирно-сочлененные автобусы большой и особо большой вмести­мости с различным количеством осей и кузовных секций, как и двух­этажные, характеризуются высокими экономическими показателями, обусловленными большой вместимостью и объемом пассажироперево­зок в расчете на одного водителя, но более громоздки и менее подвижны по сравнению с одиночными, в большей мере загромождают улицы и имеют поэтому более низкую скорость сообщения. В условиях интен­сивного уличного движения положительные качества сочлененных авто­бусов могут быть реализованы лишь при выделении для них обособлен­ных полос. Если выполнить это не представляется возможным, то пра­вильнее использовать не сочлененные, а двухэтажные или полутораэтажные автобусы, которые менее громоздки.

Троллейбус – безрельсовый уличный вид транспорта. В отличие от автобуса он связан с трассой контактной сетью централизованного электроснабжения, которое дает троллейбусу перед автобусами ряд преимуществ:

· взамен остродефицитного и дорогого жидкого топлива троллейбусы расходуют электрическую энергию, вырабатываемую на гидроэлектро­станциях и тепловых электрических станциях при сжигании низкосорт­ных топлив (низкосортного каменного угля, торфа, сланцев);

· воздушный бассейн городов не загрязняют продукты сгорания авто-мобильного топлива, троллейбусы более бесшумны;

· тяговые электродви­гатели надежнее в эксплуатации и требуют меньшего ухода по сравне­нию с двигателями внутреннего сгорания;

· отличаются более высокими динамическими характеристиками и удельными весовыми показателями, так как могут использовать из контактной сети практически любую мощность и не перевозят на себе запас топ­лива;

· продолжительным сроком службы и более низкой себестоимостью пассажирских перевозок.

Но с наличием контактной сети связаны не только преимущества, но и недостатки троллейбусного транспорта:

· контактная сеть загро­мождает улицы и площади городов, ухудшает их вид;

· связь с контакт­ной сетью уменьшает маневренность троллейбусов.

Правда, затраты в контактную и кабельную сеть сравнительно невелики: на 1 км сети – меньше стоимости одного троллейбуса большой вмести­мости шарнирно-сочлененного типа. Поэтому изменение маршрутной системы троллейбуса не требует больших капиталовложений, но оно требует времени, значительно большего, чем для автобуса. Организация троллейбусного хозяйства требует больших капиталовложений в связи с необходимостью сооружения подстанций и тяговой сети. Конструктив­ные недостатки токосъема снижают скорость движения троллейбусов на специальных частях контактной сети (пересечениях и стрелках), что приводит к снижению пропускной способности перекрестков и повышению отри­цательного влияния троллейбуса на остальное городское движение.


Рельсовые подвижные составы

 

Рельсовым называют подвижной состав, требующий для направления движения специальных путевых направляющих устройств, например двухрельсо­вую колею с расположением рельсов в горизонтальной плоскости – обычный железнодорожный или трамвайный путь, а также рельсовый путь метрополитенов. Используемый в этих случаях подвижной состав оборудуется ходовыми частями, основным элементом которых является колесная пара с жесткой стальной осью (иногда на рельсовом подвижном составе применяют разрезные (дифференциаль­ные) оси), и стальными колесами (в современных конструкциях подвижного состава рельсового транспорта широко используют подрезиненные колеса со стальными бандажами, которые имеют значительно лучшие условия взаимодействия с путевыми устройствами по сравнению с цельнометаллическими жесткими колесами). Другим типом применяемых в настоящее время путевых направляющих устройств является путевая балка, используемая для направления под­вижного состава монорельсового транспорта.

Для безрельсового подвижного состава с бесколесной ходовой частью на воздушной подушке или магнитной подвеске могут использо­ваться путевые устройства в виде лотка, монорельсовой балки, Т-образной балки и другие конструкции, проложенные на уровне земли, на эстакаде (в надземном уровне) или в тоннеле (в подземном уровне).

Трамвай – уличный рельсовый вид транспорта с общим или обо­собленным путевым полотном в основном наземного исполнения. От­личается большими затратами в путевые сооружения. Вследствие связи с рельсовой колеёй подвижной состав трамвая характе­ризуется нулевой маневренностью; лишенный возможности движения из-за повреждения ходовых частей или по другим причинам он закры­вает движение на линии для других трамваев, образуя их скопления – пробки. Поэтому к подвижному составу трамвая предъявляют более высокие требования надежности по сравнению с троллейбусами и авто­бусами.

Основными типами перспективных трамвайных поездов в настоя­щее время считают четырехосные вагоны большой вместимости для оди­ночной работы и в поездах по системе многих единиц, а также сочле­ненные – шестиосные с двумя кузовными секциями на трех двухосных поворотных тележках и восьмиосные с тремя кузовными секциями на четырех двухосных поворотных тележках.

Оптимальные геометрические характеристики трамвайных ва­гонов (форма кузова в плане, габаритная длина, ширина и высота, база вагона и отношение базы к длине) зависят от вписывания в кривые мини­мального радиуса с минимальным коридором на стесненных уличных проездах, устойчивости при движении, удобства планировки пассажир­ского салона, комфортабельности и др.

Минимальные радиусы кривых на эксплуатационных путях трамвая достигают 20 м, ширина трамвайных вагонов не превышает 2,6 м, их длина с жестким кузовом – 15–15,5 м. Вместимость трамвайных поез­дов ниже по сравнению с поездами метрополитенов. Провозная способ­ность одиночных вагонов трамвая составляет 7–9 тыс. пас./ч, двухва­гонных поездов и шарнирно-сочлененных вагонов – 10–15 тыс. пас./ч; 100-местные одиночные трамвайные вагоны при минимальном интер­вале между поездами около 40 с (пропускной способности 90 поездов/ч) способны обеспечить провозную способность 9000 пас./ч (в одном направлении движения). По экономическим соображениям трамвайные линии прокладывают на направлениях с пассажиропотоком не менее 3,5–4,5 тыс. пас./ч в одном направлении дви­жения.

Обычный трамвай характеризуется низкими скоростями (сообщения и эксплуатационной), создает помехи движению автотранспорта на пере­крестках и задержки у остановочных пунктов при нешироких улицах, усиливает шум. Трамвайные пути и контактная сеть портят вид города. По этим причинам его выносят из городских центров на окраины городов, а в ряде городов мира сняли. В настоящее время трамвай развивается на новой основе – как скоростной трамвай, отличающийся от обычного почти полным отделением от остального городского движения на обо­собленном пути.

Скоростной трамвай рассматривают теперь как новый вид ГПТ, хотя по своим конструктивным особенностям он близок к обычному, разница состоит лишь в том, что линии скоростного трамвая прокладывают в перегруженных центрах городов под землей, а в осталь­ных местах на эстакадах или на огражденном обособленном полотне с пересечениями преимущественно в разных уровнях. Это позволяет упорядочить движение трамвая, ликвидировать мешающее влияние на него остального уличного движения и повысить скорость сообщения. С этой же целью на линиях скоростного трамвая предусматривают боль­шие перегоны: в центре до 700–800 м, на окраинах – до 1200–1500 м. Это позволяет поднять эксплуатационную ско­рость скоростного трамвая до 25–30 км/ч, т. е. примерно вдвое по сравнению с обычным, эксплуатационная скорость которого составляет 16–18 км/ч.

При использовании подвижного состава большой вместимости (шарнирно-сочлененных и четырехосных вагонов, работающих поезда­ми из двух-трех вагонов по системе многих единиц) провозная способ­ность скоростного трамвая может достигать 25 тыс. пас./ч в одном направлении, т. е. примерно вдвое превышать провозную способность линий обычного трамвая. Преимущество скоростного трамвая – воз­можность существенного снижения транспортного времени пассажиров, значительного расширения зоны транспортной обслуженности населе­ния при заданной СНиП норме затрат транспортного времени и повы­шения скорости пассажирообмена в поездах, что способствует улучше­нию экономических показателей работы транспортных предприятий.

Скоростной трамвай перспективен как скоростной вид транспорта в больших городах с населением более 250 тыс. человек на направлениях с пассажиропотоком до 25 тыс. пас./ч (в одном направлении) для связи городских центров с местами массового тяготения населения. В этих условиях он имеет преимущества перед метрополитеном вследствие меньшей стоимости сооружений при высокой провозной способности. При достаточно развитой маршрутной системе трамвай обеспечивает более удобные условия проезда пассажирам вследствие уменьшения пересадочности и более высокой скорости сообщения в передвижениях, особенно на короткие расстояния.

Основные направления развития трамваев – внедрение современных кон­струкций подвижного состава с тиристорно-импульсными системами управления, обеспечение высокой эксплуатационной экономичности, динамических и эстетико-технических показателей, пониженных уровней шумов, реконструкция путевого хозяйства и внедрение более совершен­ных конструкций путевых устройств, разработка и внедрение АСУ кон­троля и регулирования движения.


 

Метрополитен рельсовый вид ГПТ с обособленным путевым устрой­-

ством тоннельного, наземного или эстакадного исполнения. В на­стоящее время линии метрополитенов прокладывают преимущественно в подземном уровне, так как в наземном исполнении они нарушают дру­гие транспортные связи города и загромождают городскую территорию.

Подземная трассировка линий определяет высокий уровень капиталь­ных затрат на метрополитене, основная доля которых приходится на тоннели. Стоимость прокладки линий метрополитена при­мерно в 100 раз превышает стоимость прокладки двухколейного трамвайного пути современной конструкции. При прокладке линий метрополитена в тюбах глубокого заложения площадь выработки растет пропорционально квадрату диа­метра тюба. Хотя стоимость тоннеля растет медленнее, чем диаметр его поперечного сечения, тем не менее по строительным затратам оче­видна экономическая выгодность тоннелей малого сечения. Но малые габариты тоннелей заставляют применять малогабаритный подвижной состав с ограниченной провозной способностью, поэтому габариты тоннелей метрополитенов в разных странах приняты с учетом ожидае­мых пассажиропотоков разными, включая и габариты рамных тонне­лей мелкого заложения.

В соответствии с принятыми габаритами тоннелей различают три класса метрополитенов:

· метрополитены с железнодорожным габаритом подвижного со­става (в Нью-Йорке, Лондоне на сети мелкого заложения). Основное преимущество этих метрополитенов – возможность прямой беспереса­дочной связи линий городских и пригородных железных дорог;

· метрополитены с нормальным габаритом подвижного состава (меньшим железнодорожного): шириной 2,4–2,7 м, высотой 3,4–3,7 м и длиной 16–19 м. К таким метрополитенам относятся Московский, Парижский и др. Подвижной состав метрополитенов стран СНГ имеет габаритную длину 18,77 м, ширину 2,7 м, высоту 3,795 м и колесную базу 12,6 м;

· метрополитены с трамвайными габаритами подвижного состава (мини-метрополитены). Такие метрополитены часто называют подзем­ным или скоростным трамваем, в особенности если их трасса проходит и в подземном, и в наземном уровнях. В настоящее время они получают широкое распространение.

В связи с прямой экономической выгодой возможно более полного использования габарита тоннелей требования к точности габаритов на метрополитенах значительно выше, чем на трамвае и других видах наземного ГПТ.

Линии метрополитенов оказывают глубокое градообразующее влияние на окружающую застройку и в то же время при подземной трассировке не загромождают улиц и не мешают застройке.

Эксплуатационные расходы на метрополитенах значительны, что определяется главным образом необходимостью постоянного наблюде­ния за протечками грунтовых вод. Количество точек протечки грунто­вых вод на новых линиях метрополитенов может доходить до 1000–1500 на 1 км пути. Большие эксплуатационные расходы связаны также с обслу­живанием станций, эскалаторов и переходов между станциями.

В связи с высокой стоимостью станций, а также по соображениям повышения скоростей сообщения подвижного состава перегоны на ли­ниях метрополитенов принимают 1–2,5 км – примерно в 2–3 раза большими, чем на линиях наземного ГПТ.При таких перегонах реали­зуются скорости сообщения подвижного состава до 35–40 км/ч.

Требования безопасности движения на метрополитенах выше, чем для наземного ГПТ вследствие особой опасности наездов в тоннелях и весьма ограниченной видимости пути. Максимальную безопасность движения обеспечивает трассировка линий метрополитена с пересече­ниями в разных уровнях, принятая в Москве, Париже и других городах, но она исключает маневренность маршрутной системы и затрудняет пересадку пассажиров, которая связана с большими затратами времени на переходы между станциями и внутри них. С учетом этого реальная скорость сообщения пассажиров метрополитена примерно вдвое ниже по сравнению со скоростью сообщения подвижного состава, а при по­ездках на короткие расстояния не превышает иногда 10–15 км/ч, т. е. даже ниже, чем при использовании наземного ГПТ. Поэтому метрополи­тен используется пассажирами в основном как скоростной вид транспор­та при поездках на большие расстояния. В метрополитенах, например, Нью-Йорка, Лондона и некоторых других городов линии трассированы частично с пересечениями в разных уровнях и частично в одном, что по­зволяет создавать маршрутные системы, подобные трамвайным. Одна­ко это снижает условия безопасности движения поездов и приводит к увеличению времени ожидания их на станциях.

По экономическим соображениям метрополитены используют в ка­честве основных скоростных транспортных систем в столичных и круп­нейших городах I и II групп с населением не менее 500 тыс. человек, а линии их прокладывают по наиболее пассажиронапряженным направ­лениям с устойчивым пассажиропотоком не менее 25–30 тыс. пас./ч в одном направлении движения. Экономическая плотность транспортной сети вследствие больших капитальных затрат в тоннели сравнительно невелика и не превышает 0,5 км/км2 селитебной территории города.

Подвижной состав метрополитенов по конструкции и основным узлам оборудования, за исключением более жестких габаритных ограни­чений и требований надежности, близок к подвижному составу трам­вая. Вагоны проектируют, как правило, четырехосными на двух двух­осных поворотных тележках или шарнирно-сочлененными. Внутреннюю планировку, а также количество и расположение дверей выбирают с учетом сравнительно короткого времени пребывания пассажиров в под­вижном составе и требований ускорения пассажирообмена в целях со­кращения времени стоянок на станциях. В связи с большим пассажирообменом на станциях, в 2–4 раза превышающим пассажирообмен под­вижного состава трамвая, вагоны метрополитена выполняют с боль­шим количеством дверей, продольным расположением сидений, широ­кими проходами и большими накопительными площадками у дверей. Специализация дверей на вход и выход пассажиров, требующая переходов пассажиров внутри вагонов, обычно отсутствует. Общая ширина дверей составляет около 0,4 длины вагонов против приблизительно 0,2 у вагонов трамвая. Для ускорения и облегчения пассажирообмена уровень пола вагонов метрополитена располагают на уровне посадоч­ных платформ.

Оборот подвижного состава метрополитенов с целью экономии площадей производят обычно на тупиковых путях без оборотных колец, поэтому вагоны имеют двустороннее управление и двустороннее симмет­ричное расположение дверей.

Энерговооруженность вагонов (мощность тяговых двигателей в рас­чете на единицу массы вагона без пассажиров) составляет 8–15 кВт/т, т. е. соизмерима с энерговооруженностью трамвайных вагонов. Тот же порядок цифр имеют и динамические показатели подвижного состава (за исключением более высокой скорости): среднее пусковое ускорение и замедление при служебном торможении 0,9–1,5 м/с2, замедление при экстренном торможении 1,0–2,5 м/с2, максимальная скорость движения 70–90 км/ч. Некоторые типы вагонов метрополитена, как и современ­ные трамвайные, оборудованы рельсовыми тормозами, но большин­ство имеют электрический и механический тормоз с пневматическим или элект­ропневматическим приводом.

Современный подвижной состав метрополитенов имеет, как правило, групповую автоматическую систему управления ТЭД, обеспечивающую управление всеми вагонами поезда по "системе многих единиц" из ка­бины машиниста головного вагона от одного контроллера управления. Для управления пуско-тормозными режимами обычно используют сис­темы реостатного регулирования. В последнее время на подвижном составе метрополитенов и наземного ГПТ (трамвая и троллейбуса) внедряют бесконтактные тиристорно-импульсные системы управления, обеспечивающие снижение до 30 % расхода электрической энергии на движение, повышенную плавность пуска и торможения и эксплуатацион­ную надежность Снижению расхода электрической энергии на движение и облегчению динамического режима работы поездов метрополитена способствует также специальная трассировка пути в профиле на перего­нах между станциями Особенность метрополитенов по сравнению с на­земным ГМПТ – использование железнодорожных систем автоблоки­ровки, так как система организации движения по принципу прямой видимости транспортной обстановки, принятая на наземном ГПТ, для метрополитенов неприемлема. Автоблокировка обеспечивает необхо­димую безопасность движения при достаточно высокой частоте движе­ния поездов.

Вследствие сравнительной легкости автоматизации управления дви­жением подвижного состава, обусловленной отсутствием помех движе­нию, на метрополитенах в настоящее время широко применяют системы автомашиниста – управление и оптимизацию режимов движения по­ездов с использованием электронных вычислительных машин (ЭВМ). Впервые в мире система автомашиниста была осуществлена и испытана в 1957–1958 гг. в бывшем СССР. В настоящее время различные варианты авто­машиниста внедрены и внедряются на Московском, Ленинградском, Парижском, Стокгольмском и других метрополитенах.

Одним из главных преимуществ метрополитенов перед другими тра­диционными видами ГПТ, кроме сравнительно высокой скорости сооб­щения подвижного состава, является высокая провозная способность, определяемая большой вместимостью поездов и сравнительно высокой частотой движения. При интервале 1,5 мин (40 поездов/ч в одном направ­лении движения), вместимости вагона 170 пассажиров и 8-вагонном поезде теоретическая провозная способность линии метрополитена 40·170·8 = 54400 пас./ч. Минимальный интервал движения на линиях метрополитенов в часы пик составляет около 90 с, а час­тота – 28 – 40 поездов в час. В настоящее время ведутся большие работы по повышению пропускной и провозной способности наиболее загру­женных линий за счет разработки и внедрения систем автомашиниста, автоматической локомотивной сигнализации (АЛС) и автоблокировки, оснащения метрополитенов новым подвижным составом с улучшен­ными характеристиками, разработки и внедрения автоматизированных систем управления (АСУ) метрополитена.

 

 


Характеристика основных видов городского пассажирского транспорта

 

Примерный перечень учитываемых преимуществ и недостатков различных видов городского пассажирского транспорта приведен в таблице 7.1.

Для хранения, технического обслуживания и ремонта подвижного состава в эксплуатации создают специальные хозяйства: гаражи и стан­ции технического обслуживания для автотранспорта, трамвайные и троллейбусные депо, депо подвижного состава метрополитенов, ремонт­ные мастерские и заводы. В гаражах и депо производят хранение, техни­ческое обслуживание и небольшой по трудоемкости ремонт подвижного состава, на станциях техобслуживания – диагностику и техническое обслуживание, в ремонтных мастерских и на ремонтных заводах сосре­доточивают крупные плановые и случайные ремонты.

Мощность всех этих хозяйств определяется количеством используемого в транспортной системе подвижного состава, его пробегом и условиями эксплуатации. Затраты на техническое содержание и ремонт подвижного состава, свя­занные с поддержанием требующегося уровня его безотказности и ра­ботоспособности, являются важной статьей эксплуатационных расхо­дов, определяющей себестоимость пассажироперевозок и, следователь­но, рентабельность транспортной системы.

Чтобы работал транспорт, нужна энергия. Для этого необходимо оборудовать подвижной состав системой энергообеспечения. Совре­менный автотранспорт имеет тяговые установки с карбюраторными или дизельными двигателями внутреннего сгорания и потребляет различные виды топлива: легковой автотранспорт – в основном бензин, грузовой и автобусы – бензин, газ или дизельное топливо. Для обеспече­ния городского автотранспорта топливом и смазкой на транспортной сети создают сеть заправочных станций. Городской электрический транспорт (ГЭТ) приводится в движение тяговыми электрическими дви­гателями (ТЭД) и потребляет электрическую энергию.

Т а б л и ц а 7.1

Транспортные средства

Преимущества

Недостатки

Автобусы

Хорошая маневренность

Небольшие сроки вве­дения в эксплуатацию

Оперативность в изменении маршрутов

Возможность быстро организовать перевозки для разово возникших потреб­ностей в больших объемах перевозок

Небольшие первона­чальные затраты на освое­ние новых маршрутов

Большие эксплуата­ционные расходы

Повышенный уровень загрязнения окружающей среды

Большая степень напряженности труда водителя

Меньшая надеж­ность работы подвижного состава

Необходимость ежедневной заправки топливом

Метрополитен

Самая большая про­возная способность

Высокая скорость сообщения

Высокая точность и ре­гулярность движения

Высокая степень безопасности движения

Хорошие условия поездки для пассажиров

Гарантирована невозможность неоплаченной поездки

Быстрая посадка и высадка пассажиров

Высокая первона­чальная стоимость со­оружения

Большое расстояние между станциями 

 

Троллейбусы

Небольшие первоначальные затраты (но большие, чем у автобуса)

Отсутствие вредного воздействия на окружаю­щую среду

Необходимость сооружения устройств для электроснабжения

Излишнее загро­мождение пространства улиц

Ограниченная ма­невренность в движении

Трамваи

Относительно большая провозная способность

Низкая себестоимость перевозок

Большой срок службы подвижного состава

Простота управления трамваем (трамвайным по­ездом)

Низкая маневренность

Шумовое загрязнение окружающей среды

Значительные перво­начальные затраты

Невозможность обойти впереди стоящие (отказавшие в работе) трамваи

Загромождение ули­цы рельсовыми путями и электросетью

Автомобили

Высокая скорость со­общения

Доставка пассажира непосредственно к местам назначения

Комфортные условия поездки пассажиров

Большая маневренность

Относительно вы­сокая стоимость поездки

В часы пик затруднены вызов или посадка в пунктах стоянки автомобилей-такси

Малая вместимость

Большая трудоемкость перевозок

Современные виды ГЭТ – трамвай, троллейбус и метрополитены – имеют центра­лизованную систему электроснабжения, при которой подвижной состав получает электрическую энергию от районных распределительных пунктов городской энергосистемы через тяговые подстанции и тяговую сеть.

Различные виды энергоснабжения системно связаны с подвижным составом ГПТ не только по мощности и режимам работы, но и по ряду других

характеристик. С работой системы электроснабжения рельсового ГЭТ свя-ны, например, токи утечки в землю, разрушающие городское подземное хозяйство (трубопроводы водопровода и канализации, газо­проводы, оболочки кабелей различных сетей и др.). Величина токов утеч­ки при прочих равных условиях зависит от распределения подвижного состава по транспортной сети. Использование установленной мощности тяговых преоб­разовательных подстанций ГЭТ определяется мощностью и схемами соединения ТЭД поездов, режимами их работы и частотой движения.

Организацией движения называют систему планирования движения и контроля за движением поездов на транспортной сети (соблюдением расписания), а также соответствием выпуска подвижного состава на линию фак­тическому пассажиропотоку. В задачу организации движения входит устранение нарушений расписания движения (отклонений движения от заданного графика) и в некоторых случаях приведение выпуска в соот­ветствие с отклонениями фактических пассажиропотоков от плановых. Она определяет регулярность следования, скорость сообщения подвижного состава на маршрутах, качество пассажироперевозок и все основные технико-экономические показатели ГПТ. Необходимый со­став технических средств организации движения и соответственно вкладываемые в них затраты определяются в конечном счете мощно­стью осваиваемых пассажиропотоков. В городах с большим объемом пассажироперевозок и разветвленной маршрутной сетью в настоящее время создают автоматизированные и автоматические системы органи­зации движения.

Основным показателем, определяющим системную связь устройств ГПТ, является пассажиропоток (объем осваиваемых пассажироперево­зок). Величина пассажиропотоков, их распределение по направлениям, колебания во времени и другие параметры определяют основные характеристики маршрутной сети, выбор вместимости подвижного состава, частоту движения, мощность системы энергоснабжения и сис­тему организации движения. Важное технико-экономическое значение имеет соотношение капитальных затрат в элементы систем ГПТ – под­вижной состав, путевые устройства, системы энергоснабжения, устрой­ства организации движения. Системы ГПТ, отличающиеся большой долей затрат на путевые сооружения и связанные с ними устройства, характеризуются низкой маневренностью, поэтому их рассчитывают на весьма длительный срок эксплуатации. Проектирование их требует особенно точного и надежного прогнозирования. Примером таких городских транспортных систем является метрополитен. Системы ГПТ, у которых основные капиталовложения приходятся на подвижной со­став, отличаются высокой маневренностью и легкой приспосабливаемостью к изменениям пассажиропотоков. Примером таких транспорт­ных систем является автобус и в несколько меньшей степени троллейбус, которые используют, в частности, для транспортного обслуживания районов новостроек, так как они не требуют длительного освоения.

 


Основные показатели, характеризующие городскую транспортную сеть (ГТС)

 

Для сравнения и оценки ГТС используют ряд показателей, которые характеризуют соответствие транспортной сети обслуживаемому городу и осваиваемым пассажиропотокам. Различают две группы этих показа­телей: технические и экономические.

Технические показатели. Характеризуют совершенство технических решений сети по различным критериям оптимизации (доступности для населения, обеспечения прямолинейности поездок, маневренности, изо­лированности от городской застройки и остального городского движе­ния, трудности сообщения и др.). Все эти показатели выражают в отно­сительных (безразмерных) или размерных единицах. Основной недоста­ток технических показателей – их несравнимость, трудность, а часто и невозможность приведения к единому измерителю. Вместе с тем они дают возможность непосредственно в явном виде исследовать и направ­ленно выбирать характеристики ГТС.

К основным техническим характеристикам относят показатели, характеризующие удобство пользования сетью и уровень транспортного обслуживания ею населения города: пешеходную доступность транспорт­ных линий и остановочных пунктов; населенность зоны пеше­ходной доступности транспортных линий; плот­ность транспортной сети; коэффициент охвата; коэффициент рядности движения; среднесетевую максимальную разрешенную скорость движения на уличных проездах; среднесетевой коэффициент не­прямолинейности передвижений между важнейшими пассажирообра­зующими центрами города; удельный вес передвижений населения с затратами времени, не превышающими норм СНиП; среднюю трудность сообщения по затратам времени на передвижения и др.

Экономические показатели. Характеризуют совершенство ГТС кос­венно по критерию минимума капитальных затрат и эксплуатационных расходов в рублях. Недостаток экономических показателей состоит в том, что они связаны с техническими решениями в неявном виде, досто­инство – в том, что их выражают в одних и тех же приведенных едини­цах, благодаря чему они легко сравнимы.

К основным экономическим показателям относятся общие и удельные капитальные затраты и эксплуатационные расходы по транспортной сети в расчете на 1 км длины, на 1 предоставляемый пассажирам место-км, на единицу транспортной работы и др.


Проблемы, стоящие перед городским пассажирским транспортом, и пути их решения

 

Современный кризис ГМПТ в развитых странах вызван неконтролируемой автомобилиза­цией. Предел развитию автомобилизации ставит низкая провозная способность легкового автомобиля и ограниченная пропускная способ­ность городских транспортных магистралей. Объективно существует предел провозной способности, определяемый насыщением транспортных магистралей автомобилями, превышение которого вызывает резкое падение скорости всего транспортного потока, образование заторов и пробок.

Любое транспортное средство занимает на транспортной магистра­ли определенную площадь – тем большую, чем выше его скорость. В расчете на одного пассажира автобуса обычной вместимости порядка 86 человек при 100 %-ном наполнении она составляет при скорости движения 50 км/ч примерно 3,5 м2, при 40 %-ном – 9 м2. На одного пассажира легкового автомобиля вместимостью 4 человека при 100 %-ном и 40 %-ном наполнении в тех же условиях удельная площадь транспортной магистрали составляет соответственно 60 и 170 м2, т.е. почти в 20 раз больше. Еще более разительна разница в удельных площадях уличных проездов, требующихся на одного пассажира легкового автомобиля и мощных средств МПТ, в частности скоростного трамвая. При скорости 50 км/ч на одного пассажира скоростного трамвая вмести­мостью 270 человек при 100 %-ном наполнении приходится всего 1,6 м2 площади транспортного проезда и при 40 %-ном – около 4 м2, т. е. более чем в 40 раз меньше, чем на одного пассажира легкового автомо­биля. Это означает, что замена легкового автомобиля на скоростной трамвай позволяет в сравнимых условиях увеличить провозную способ­ность в 40 раз.

При насыщении транспортных магистралей автомобилями имеется один реальный путь освоения растущих пассажиропотоков (не считая регулировочных мероприятий) – строительство новых дорогостоящих многоярусных автомагистралей.

Таким образом, задачу освоения растущих пассажиропотоков можно

решить автомобилизацией лишь до определенного предела. Малые и средние города с небольшими пассажиропотоками могут решать за­дачи пассажирского обслуживания автомобилизацией, а крупные города должны сочетать ее с развитием ГМПТ.

Современные трудности сочетания развития ГМПТ с автомобилиза­цией на Западе, например, определяются рядом обстоятельств:

· современный автомобиль предоставляет пассажиру несравненно более высокий уровень комфорта, чем средства ГМПТ;

· автомобильный бум и постоянная реклама автомобиля создали среди населения устойчивый "психологический барьер недоверия" к МПТ;

· современная система организации движения ГМПТ на маршру­тах с частыми остановками не обеспечивает использования его ско­ростных возможностей, связана с высокой транспортной утомляе­мостью и другими неудобствами для пассажиров (большими затратами времени на пешеходный подход к остановкам МПТ, на ожидание тран­спорта и пересадки).

Поэтому задача сочетания развития ГМПТ с автомобилизацией в крупных городах заключается в создании новых средств МПТ, конку­рентоспособных с автотранспортом, т. е. обладающих основными преимуществами автотранспорта и перекрывающих их. Создание таких средств ГМПТ, их преимущества перед легковыми автомобилями по комфортабельности и затратам транспортного времени позволят решить и проблему "недоверия" пассажиров к ГМПТ.

Сущность современного этапа развития ГМПТ поэтому и состоит в возрождении его на более высоком уровне современной техники. Основными путями развития ГМПТ в настоящее время являются:

· разработка новых методов организации движения ГМПТ на базе развития теории городских пассажирских перевозок и внедрение автоматизированных систем управления движением (АСУД). Известно, что при прочих равных условиях именно организация движения явля­ется главным рычагом повышения эффективности ГМПТ – это под­тверждает как отечественная, так и зарубежная практика. Именно не­удовлетворительной системой организации движения определяются низкие эксплуатационные качества современного ГМПТ, основным показателем которых является эксплуатационная скорость. Конструктивная скорость современных видов наземного ГМПТ составляет 65–90 км/ч, причем она легко может быть повышена до любого, практически необходимого уровня. Этого просто не требуется, так как при обычных условиях движения скорость сообщения наземных видов ГМПТ составляет не более 18–20 км/ч, а иногда не превышает 14–17 км/ч;

· совершенствование традиционных видов ГМПТ – трамвая, троллейбуса, автобуса и метрополитена, включая развитие конструкций подвижного состава на основе новых, более высоких требований, совершенствование путевых устройств, систем электроснабжения, а также разработка новых, более результативных принципов организации движения. Примерами такого совершенствования традиционных видов ГМПТ являются разработки систем скоростных трамвая и автобуса, подвижного состава метрополитена на пневматических колесах, автобусные системы с нефиксированными маршрутами и др.;

· разработка новых видов ГМПТ, рассчитанных на новые, наиболее эффективные методы организации движения, обеспечивающие меньшие затраты транспортного времени в пассажиропоездках.

Проблемы городского транспорта нарастают и обостряются. При численности городского населения СНГ 189 млн человек объем перевозок городским транспортом достигает 64 млрд пассажиров, что в 4,5 раза превышает поток пассажиров, пользующихся всеми видами магистрального транспорта. Объем городских перевозок увеличивается быстрее роста населения, при этом увеличивается и дальность поездок.

Таким образом, современный период развития характеризуется неослабевающими темпами автомобилизации. Транспортники и градостроители Запада полагают, что проблемы ГПТ будут решаться в городах по пути использования легковых автомобилей во всех случаях, когда это возможно, т. е. в мелких и средних по населенности городах. В крупных городах легковые автомобили не могут освоить пассажиропотоки даже на ультрасовременных супер­автострадах. В этих условиях возвращение к развитию МПТ считают единственным выходом из создавшегося транспортного тупика.

По мере роста размеров городов все виды городского транспорта стали убыточными. Требуется всестороннее обсуждение вопроса о пересмотре тарифов, но при любом решении необходимо проведение мер по снижению себестоимости перевозок.

Необходимо решение ряда неотложных проблем:

· повышение частоты и соблюдение регулярности движения в соответствии с расписанием;

· увеличение скорости сообщений, т. е. скорости доставки пассажиров;

· повышение уровня комфорта для пассажиров;

· снижение шума и степени загрязнения воздуха.

Генеральным направлением развития городского транспорта является преимущественное наращивание средств общественного транспорта.

В крупных городах, перегруженных наземными потоками, все большее предпочтение отдают сооружению подземных и эстакадных метро.

Снова большие надежды возлагаются на трамвай, разрабатываются проекты скоростного трамвая. Большое внимание уделяется совершенствова

нию систем управления уличным движением.

Сложной является проблема загрязнения воздушного бассейна городов

выхлопными газами автомобилей, особенно бензиновых двигателей. Большое значение имеет замена карбюраторных двигателей дизельными. Дизели выбрасывают в 50 – 100 раз меньше окиси углерода и в 2 раза меньше углеводорода, чем карбюраторные двигатели. Важным направлением является переход на электрические автомобили, которые к тому же являются менее шумными, но у них пока мала энергоемкость аккумуляторных батарей.

Заслуживают внимания некоторые новые проекты городского транспорта, которые разработаны или осуществлены в ряде зарубежных стран. Созданы системы электрического городского безрельсового транспорта в виде поездов на пневматическом ходу (типа метрополитена). Поезда следуют по специальному пути в желобе или с направляющими и управляются центральной ЭВМ.

Полагают, что за пределами ХХ века большая часть населения мира будет жить в городах, крупнейшие из которых превратятся в мегаполисы – гигантские урбанистические агломерации, образующиеся в результате срастания близкорасположенных городов в город с размерами 150 – 300 км и населением 60 – 70 млн человек. Такие мегаполисы уже находятся в стадии стихийного образования в США, Японии, Германии, Англии. Это потребует кардинального пересмотра современной транспортной политики.