Транспортные системы

Всё об автомобильном, ЖД и авиатранспорте в России

Новые виды транспорта

Поезд на магнитной подушке (подвеске)

 

Аппараты на магнитной подвеске оказываются более перспективными. Принцип магнитной подвески состоит в следующем. Если на путь уложить магниты с полюсами, направленными вверх, а на вагоне установить магниты той же полярности, направленные вниз, то под действием сил отталкивания вагон зависнет над путем с зазором в 10–15 мм. Конструктивно магнитная подвеска может выполняться не только способом электродинамического отталкивания, но и приближения. Под тягой от воздушных винтов или от линейного электродвигателя такой вагон получает поступательное движение, преодолевая только сопротивление воздушной среды. Отсутствие механического контакта вагона с путем обеспечивает почти идеальную плавность хода при самых высоких скоростях. Во многих странах уже 15–20 лет ведутся соответствующие исследования и конструкторские работы.

Сравнение транспортных средств на воздушной подушке и магнитной подвеске показало бесспорное преимущество последних. Главное достоинство магнитной подвески заключается в меньшей затрате энергии на создание зазора между путем и подвижным составом.

В лучших образцах магнитопоездов на тонну массы вагона необходима мощность 1 кВт, тогда как на создание воздушной подушки требуется мощность 30–40 кВт. Второе преимущество поездов на магнитной подвеске заключается в отсутствии сильного шума, присущего аппаратам на воздушной подушке.

В области разработки магнитопоездов наибольшие результаты получены в Германии и Японии. В 1988 году модель, представляющая вагон на 196 мест длиной 54 м и массой 120 т, развила скорость 412 км/ч (Германия).

Первой осуществленной городской линией длиной 600 м с магнитной подвеской считается двухпутная линия, связывающая железнодорожный вокзал с аэропортом в Бирмингеме (Англия). Поезд состоит из 2 легких вагонов из стеклопластика вместимостью 40 пассажиров и следует с зазором 15 мм над путем со скоростью 40 км/ч. Поступательное движение осуществляется линейным электродвигателем. Поезд управляется ЭВМ без машиниста.

Перспективы развития магнитного транспорта связывают с возможностью использования сверхпроводящих магнитов, позволяющих резко снизить энергозатраты. Но и теперь при перевозках на расстояние 1–2 тыс. км магнитопоезда могут оказаться более эффективными, чем самолеты.

Поезд на магнитной подушке должен решать такие же проблемы, как и поезд на воздушной подушке: как эффективнее создать противодействие полю тяготения Земли, отказавшись от колеса, которое ограничивало увеличение скорости движения, и каким должен быть тяговый двигатель. Способ подвески и тип двигателя являются определяющими при разработке, проектировании и практическом воплощении скоростных бесколесных поездов вообще и поездов на магнитной подушке, в частности.

Главное достоинство поездов на магнитной подушке заключается в от-

сутствии вредного воздействия на окружающую среду: они не шумят, не загрязняют атмосферу, и было бы нелогичным в таких поездах в качестве тяговых использовать реактивные двигатели или двигатели с толкающим либо тянущим винтом. Поэтому для поездов на магнитной подушке (рисунок 9.10) разрабатываются двигатели, в которых механическое тяговое усилие возникает в результате взаимодействия магнитных и электрических полей. Созданное таким образом усилие может быть использовано и для подвешивания поезда над рельсовым полотном.

clip_image020

Рисунок 9.10 – Поезд с магнитным подвешиванием для высокоскоростных магистралей

Реализация этого взаимодействия на практике осуществляется в электрических двигателях постоянного и переменного тока. Принцип действия электрической машины постоянного тока основан на явлении электромагнитной индукции, открытом М. Фарадеем в 1841 г. Если замкнутый проводник вращать в постоянном магнитном поле, то в нем возникает переменная электродвижущая сила (ЭДС).

Работа электрического двигателя постоянного тока основана на законе Ампера, по которому магнитное поле с определенной силой действует на проводник с током. Следовательно, если внутри постоянного магнита поместить замкнутый проводник и пропустить через него электрический ток, то возникнет сила, которая заставит этот проводник вращаться. Первый двигатель постоянного тока, который мог быть использован для практических целей, был построен русским физиком и электротехником Б. С. Якоби в 1842 г. Вначале в двигателях использовались постоянные магниты, затем – электромагниты.

Активными элементами электрического двигателя постоянного тока, применяемого в настоящее время, являются обмотки статора и ротора (якоря), магнитные сердечники и коллектор. Магнитный сердечник статора имеет главный и дополнительные полюса. На главных полюсах есть  обмотка возбуждения, которая и создает основное магнитное поле. Коллектор и щетки усложняют конструкцию и понижают надежность ее работы, их обслуживание требует больших затрат. Коллекторно-щеточный узел ограничивает скорость вращения двигателей постоянного тока значениями 50–52 м/с. Однако двигатели постоянного тока позволяют в широких пределах плавно и экономично регулировать угловую скорость. Поэтому они получили большое распространение на рельсовом и безрельсовом электрифицированном транспорте.

Использование такого двигателя в качестве тягового в высокоскоростных поездах на магнитной подушке возможно, если он будет выполнен в виде линейного двигателя, вытянутого вдоль рельсового полотна. Однако применение линейного двигателя постоянного тока с коллектором и механическим коммутатором в бесколесных поездах связано с большими материальными затратами на изготовление и обслуживание коллектора и ограничением скорости значениями 110–140 м/с из-за условий коммутации.

Возможности линейного двигателя постоянного тока могут быть существенно расширены, если переключение секций обмотки якоря осуществлять автоматически в зависимости от расположения полюсов индуктора. Такой двигатель называют автосинхронным.

В настоящее время и у нас в стране, и за рубежом много внимания уделяется разработке электродинамического принципа создания тягового усилия. Известны асинхронные и синхронные электрические двигатели, использующие этот принцип. В асинхронных электрических двигателях осуществляется взаимодействие магнитного поля, создаваемого переменным электрическим током в обмотках статора, с электрическим током, который генерируется в обмотках ротора.

Этот принцип стал использоваться в асинхронных электрических машинах после того, как в 1888 г. итальянский физик Г. Феррарис и сербский инженер Н. Тесла независимо друг от друга открыли явление вращающегося магнитного поля, которое создается при наложении двух или более переменных магнитных полей одинаковой частоты, но сдвинутых в пространстве по фазе.

Если по обмотке статора пустить трехфазный переменный ток, то возникает вращающееся магнитное поле, которое, взаимодействуя с током, индуцируемым в обмотках ротора полем статора, создает механическое усилие, которое заставляет ротор вращаться в направлении вращения магнитного поля. При этом скорость вращения ротора меньше скорости вращения поля статора, т. е. ротор по отношению к полю статора вращается асинхронно. Скорость вращения ротора зависит от скорости вращения магнитного поля статора и определяется частотой питающего тока и числом пар полюсов.

В зависимости от способа выполнения обмотки ротора различают асинхронные электродвигатели с контактными кольцами и короткозамкнутые. При пуске асинхронного электродвигателя с короткозамкнутым ротором возникает пусковой ток, величина которого в 4–7 раз превышает номинальный. Чтобы снизить пусковой ток, его включают на пониженное напряжение, а после запуска обмотку ротора асинхронного двигателя замыкают накоротко. Воздушный зазор у асинхронного двигателя должен быть возможно меньшим.

Принцип асинхронной электрической машины можно использовать для создания тягового усилия в бесколесных поездах. В этом случае статор двигателя, к которому подводится переменный трехфазный электрический ток, размещается в вагоне, а ротор – вдоль рельсового пути. Возникнет тяговое усилие, и плоский статор, а вместе с ним и поезд двинется вдоль плоского ротора. Такой двигатель получил название линейного асинхронного. Линейный асинхронный двигатель имеет большие преимущества при использовании в скоростных бесколесных поездах. У него нет ограничения по скорости, так как он не имеет вращающихся частей, которые при высоких скоростях могут быть разорваны центробежными силами, а, следовательно, не возникает и вибраций. Кроме того, сами вращающиеся части подвержены быстрому износу. Поезд с линейным асинхронным двигателем имеет хорошие динамические характеристики: так как масса его невелика, он быстро набирает скорость и легко тормозится, при этом рекуперируемая энергия возвращается в электрическую сеть.

Существует много вариантов конструкций линейного асинхронного двигателя. Один из них состоит в следующем: статор развертывается вдоль полотна (активный путь), а ротор, выполненный в виде алюминиевой шины, – в вагоне. Поезд становится легче, так как он не несет тяжелого статора, масса которого составляет 1/4 массы поезда; кроме того, отпадает необходимость передавать электроэнергию на экипаж, движущийся с высокой скоростью. Однако стоимость активного пути так высока, что приходится от этого варианта отказаться.

Другой вариант предусматривает, например, размещение в вагоне двух статоров, между которыми с зазорами 30–40 мм располагается алюминиевая шина, устанавливаемая на полотне. Это двусторонний линейный асинхронный двигатель с вертикальным расположением алюминиевой шины и статоров. Такая конструкция тягового двигателя очень усложняет устройство "стрелочных" переводов. Эта проблема легко решается применением одностороннего линейного асинхронного двигателя. В этом случае в вагоне в горизонтальном положении размещается один статор, а алюминиевая шина располагается на полотне. Для увеличения магнитной проводимости под нее можно положить стальной сердечник. Эта конструкция получила название "сандвич". Однако тяговое усилие одностороннего линейного асинхронного двигателя при прочих равных условиях вдвое меньше, чем двустороннего.

При использовании линейного асинхронного двигателя полотно дороги не подвержено температурным нагрузкам, так как при быстром движении поезда участки дороги, на которых происходит взаимодействие магнитного поля статора с электрическим током ротора, не успевают нагреваться. А статор нагревается теплом, которое выделяется протекающим в проводниках током. Нагревание статора – одна из самых серьезных проблем. Основное направление ее решения – использование сверхпроводников.