Транспортные системы

Всё об автомобильном, ЖД и авиатранспорте в России

Новые виды транспорта

Скоростные бесколесные поезда на воздушной подушке

 

Воздушная подушка, на которую опирается скоростной бесколесный поезд, благодаря монорельсовому полотну может быть существенно меньше, чем воздушная подушка кораблей и автомобилей: при гладкой поверхности рельсового полотна, которую нетрудно получить в заводских условиях, толщина ее измеряется в миллиметрах. Воздушная подушка в таком поезде выполняет роль смазки между опорной поверхностью поезда – скользящим шасси и поверхностью монорельса. Для создания тонкой воздушной подушки – воздушной смазки – требуется существенно меньшая мощность. Высвободившуюся мощность можно направить на увеличение скорости движения.

Если снабдить поезд крыльями, то по мере увеличения скорости движения они будут создавать все большую и большую подъемную силу, уменьшая тем самым воздействие поезда на воздушную подушку. Но чем меньше масса поезда, тем меньшая мощность требуется для создания воздушной подушки. В результате получается удачная с энергетической, а следовательно, и с экономической точки зрения система. При малых скоростях крыло работает неэффективно, и мощность расходуется на создание воздушной подушки. По мере увеличения скорости растет сопротивление движению, однако эффективнее начинают работать крылья, увеличивая создаваемую ими аэродинамическую подъемную силу, воздействие веса поезда на воздушную подушку снижается. Высвобождаемая мощность направляется на преодоление сопротивлений и увеличение скорости движения.

Таким образом, с увеличением скорости до определенного предела, обусловленного возрастанием лобового сопротивления, экономичность крылатого поезда на воздушной подушке не только не ухудшается, а, напротив, улучшается. При скоростях свыше 400 км/ч воздушную подушку можно создавать без помощи вентиляторов, используя динамический напор набегающего потока воздуха и близость расположения опорных поверхностей поезда и рельсового полотна – эффект экрана. Это обстоятельство еще больше увеличивает возможности крылатых поездов с точки зрения повышения их экономичности при высоких скоростях.

Крылатый поезд на воздушной подушке должен быть не похожим на привычные железнодорожные составы. Во-первых, от составов придется отказаться, так как при скоростях, превышающих 400 км/ч, работа сцепки становится трудноразрешимой проблемой. Поезд на воздушной подушке должен быть похож на фюзеляж крупного пассажирского самолета, однако крылья его будут отличаться от крыльев самолета: так как поезд движется над землей, самолетный размах крыльев неприемлем, они должны быть вытянутыми вдоль корпуса поезда или, для улучшения аэродинамических характеристик, расположены на крыше.

Отсутствие колес позволяет отказаться от двух рельсов и заменить их одним – монорельсом, имеющим достаточную опорную поверхность. Если нет колес, не будет и динамических воздействий колеса на рельс. Поэтому монорельс можно изготавливать не из дорогого и дефицитного металла, а из бетона. Отсутствие колес снимает те ограничения по скорости, которые присущи современным железнодорожным поездам. Высокие скорости поездов на воздушной подушке потребуют изолирования этого вида транспорта от других транспортных средств и пешеходов. С этой целью монорельс целесообразно проложить по эстакаде в нескольких метрах над землей. Вынос монорельса на эстакаду целесообразен не только из соображений безопасности, но также и с экономической точки зрения, особенно если дорогу придется прокладывать в труднодоступных районах. В заболоченных местах, в районах вечной мерзлоты и в ряде других случаев предпочтительной оказывается прокладка по эстакаде даже автомобильной дороги.

Крылатые монорельсовые поезда на воздушной подушке могут использовать турбовинтовые реактивные двигатели, которые обладают хорошими экономическими показателями в диапазоне скоростей 450–600 км/ч. Еще лучше, если вместо них применить двухконтурные турбовентиляторные двигатели: по своим характеристикам они соответствуют турбовинтовым, но создают значительно меньше шума.

Реактивный двигатель может создать дополнительную подъемную силу, если газы, вырывающиеся из его сопла, направить в желоб. Согласно уравнению Бернулли, скорость газа и его давление связаны обратной зависимостью: чем больше скорость, тем меньше давление. За счет разности скоростей струи реактивного двигателя, протекающей по желобу, и окружающего желоб воздуха возникает перепад давления. Этот перепад давления создаст добавочную подъемную силу, которая будет наибольшей на стоянке и станет убывать с увеличением скорости поезда. При ускорении разность между скоростью реактивной струи и скоростью набегающего потока воздуха будет уменьшаться.

Так как скользящее шасси поезда расположено близко к поверхности монорельса, в поездах на воздушной подушке эффективно применение линейного асинхронного двигателя. Что же представляет собой линейный асинхронный двигатель? Если обмотку статора асинхронного электромотора развернуть вдоль монорельса, а ротор разместить на поезде и пустить электрический ток, то между ротором и статором возникнет магнитное поле, которое заставит поезд двигаться вдоль монорельса. Малый зазор между плоскостями поезда и монорельса гарантирует небольшие потери энергии. Линейные асинхронные двигатели бесшумны, не загрязняют окружающей среды. Однако на пути их широкого использования стоит проблема экономичности при высоких скоростях движения поезда.

Произведем оценку крылатого поезда на воздушной подушке, двигающегося по монорельсу, вынесенному на эстакаду, по критериям прогрессивности.

По скорости крылатые монорельсовые поезда на воздушной подушке превосходят все виды транспорта, уступая лишь авиации. Однако, несмотря на то, что скорость поездов ниже скорости пассажирских самолетов, на расстоянии 3000–3500 километров пассажир поезда проводит в пути меньше времени, чем авиапассажир. Это объясняется тем, что авиапассажирам приходится тратить много времени на поездку от центра города до аэропорта, причем с развитием авиации это время увеличивается.

Какова тенденция развития авиации? Чем больше самолет, тем он экономичнее. Но большие самолеты требуют больших аэродромов, которые приходится выносить далеко за черту города. Довольно часто полет отнимает меньше времени, чем поездка из города в аэропорт и из аэропорта в город. Поезда же на воздушной подушке могут проходить через центр города. Следовательно, в отношении скорости доставки пассажиров и грузов крылатые монорельсовые поезда на воздушной подушке выгодно отличаются от других видов транспорта.

Проблема безопасности на транспорте – одна из наиболее острых в современном мире. Каждый год в мире происходит около 55 миллионов автомобильных аварий. Практически каждый девятый водитель в течение своей жизни бывает ранен или погибает в автомобильной катастрофе. Смертность в результате автомобильных аварий стоит по статистике на третьем месте после смертности от болезней системы кровообращения и раковых заболеваний.

Крылатый поезд на воздушной подушке является более скоростным видом транспорта, чем автомобильный, и поэтому, разрабатывая его, надо было с самого начала продумать весь комплекс мероприятий, который обеспечил бы безопасность его эксплуатации.

Безопасность эксплуатации поезда на воздушной подушке обусловлена в первую очередь следующими двумя факторами: отсутствием механического контакта поезда с поверхностью движения, с одной стороны, и неразрывной связью поезда с монорельсом, проложенным по эстакаде, с другой. Отсутствие механического контакта обеспечивается воздушной подушкой, непосредственная связь поезда с монорельсом – конструкцией скользящего шасси поезда и монорельса. Можно предложить ряд конструктивных решений сочленения скользящего шасси и монорельса. Выбор конструкции зависит от многих условий, и в первую очередь от того, будет ли аэродинамическая подъемная сила поезда при расчетной скорости превышать вес поезда или нет.

Если вес поезда больше аэродинамической подъемной силы, то можно предложить скользящее шасси, сверху и с двух сторон охватывающее монорельс. В щель между плоскостями скользящего шасси и монорельса непрерывно поступает под давлением от вентиляторов сжатый воздух. Такая конструкция не позволит поезду сойти с рельса. Если же возникнет усилие в поперечном направлении, например, от порыва ветра, то это приведет к уменьшению зазора между соответствующими боковыми плоскостями скользящего шасси и монорельса, увеличению давления воздуха в этом зазоре, а в итоге – к возникновению противодействующей силы. Аналогично такое сочленение будет действовать при движении поезда по закруглению. Следовательно, в этих случаях система скользящее шасси – монорельс будет вести себя как саморегулирующаяся.

Принцип саморегулирующейся системы используется и для того, чтобы обеспечить устойчивое движение поезда на воздушной подушке относительно монорельса. Вопросы устойчивости имеют важное значение и для безопасности движения, и для экономичной работы силовой установки, и для создания комфортных условий для пассажиров.

Поезд относительно монорельса находится во взвешенном состоянии. Одновременно на него действуют сила тяжести, аэродинамическая подъемная сила и силы сопротивления, которые в процессе движения не остаются постоянными. Масса поезда уменьшается, так как расходуется топливо, следовательно, уменьшается сила тяжести. Аэродинамическая подъемная сила и сила сопротивления зависят от скорости движения, плотности окружающего воздуха, порывов ветра, а также от ряда других факторов. Колебания сил сопротивления уравновешиваются тяговым усилием силовой установки. А колебания аэродинамической подъемной силы и силы тяжести компенсируются воздушной подушкой, т. е. воздушная подушка выполняет роль амортизатора. Если аэродинамическая подъемная сила будет равна весу поезда, то система может оказаться неустойчивой. Поэтому надо, чтобы эти силы не были равны.

При втором варианте, когда вес поезда меньше аэродинамической подъемной силы, на монорельс и эстакаду будет действовать сила, направленная вверх. В этом случае меняется конструкция сочленения скользящего шасси поезда и монорельса.

Связь поезда с монорельсом в существенной мере влияет на безопасность его эксплуатации. На всем пути поезд не отрывается от монорельса, он не взлетает и не садится, как самолет, а ведь до 80 % всех авиационных катастроф происходит при взлете и посадке.

Столкновение поездов с другими транспортными средствами или пешеходами, как уже упоминалось выше, исключается вследствие того, что монорельс размещается на эстакаде и поднят над землей. С помощью эстакады решаются также вопросы транспортных развязок, что особенно важно для густонаселенных районов. Разработаны стрелочные переводы для бесколесных поездов.

Торможение поездов можно осуществить несколькими способами. Во-первых, с помощью реверса тяги, когда направление вектора силы тяги двигателя меняется на противоположное (в реактивных двигателях изменяется направление истекающей струи, у турбовинтовых двигателей изменяется положение лопастей винта); во-вторых, за счет сопротивления выдвигаемых поверхностей (в самолетах, например, для этой цели используют закрылки, выбрасывается тормозной парашют); в-третьих, посредством тормозных колодок благодаря малому зазору между скользящим шасси поезда и монорельсом. Для улучшения эксплуатационных качеств эти колодки могут иметь специальные покрытия.

Засорения поверхности монорельса песком, щебнем и другими предметами легко избежать за счет соответствующей формы монорельса, например, если его верхние опорные поверхности выполнить наклонными, что будет способствовать также стоку воды и уменьшению благодаря этому образования льда в зимнее время. Для борьбы с обледенением можно использовать и высокую температуру выхлопных газов реактивных двигателей, а также другие средства.

Рельсовый транспорт обладает самым высоким грузооборотом. Железнодорожный транспорт нашей страны занимает ведущее положение по количеству перевозимых грузов и пассажиров. Большой грузоподъемностью отличаются и крылатые монорельсовые поезда на воздушной подушке. Правда, состав железнодорожного транспорта более грузоподъёмен, чем поезд на воздушной подушке, однако бесколесные поезда обладают гораздо большей скоростью, от которой существенно зависит грузооборот. Увеличению грузооборота рельсового транспорта в значительной мере способствуют системы автоматики, которые позволяют резко повысить пропускную способность дороги, сокращая интервалы между поездами и в то же время гарантируя безопасность движения. Напомним, что переход к автоматическому регулированию движения на метрополитене позволил сократить интервалы между поездами до 32 секунд.

Внедрение автоматики в транспортные системы крылатых монорельсовых поездов на воздушной подушке позволит решить задачи выбора оптимальных скорости движения бесколесных поездов и интервала между поездами, управления работой агрегатов поезда и контроля за ней, а также состояния трассы (монорельса, эстакады, опор), включения экстренного торможения в случае аварийной ситуации и т. п. Кроме того, поезда на воздушной подушке не зависят от капризов погоды, что тоже благоприятно отражается на грузообороте.

Предполагается использовать поезда на воздушной подушке главным образом как пассажирский транспорт. Однако в отдельных случаях они будут перевозить срочные негабаритные грузы, т. е. выполнять те же функции, которые в настоящее время выполняет авиация.

В целом по критерию грузооборота крылатые монорельсовые поезда на воздушной подушке, способные на высокой скорости вне зависимости от погоды перевозить большое количество пассажиров и относительно легких грузов, вполне отвечают требованиям, предъявляемым к новому виду транспорта, имея показатели лучшие, чем, например, авиационный транспорт.

Прогрессивность скоростных бесколесных поездов на воздушной подушке, как и любого другого вида транспорта, должна быть оценена и с точки зрения экономики. Экономичность можно оценить, например, сроком окупаемости выбранного участка дороги с заданным объемом перевозок. Мы не будем рассматривать весь спектр вопросов, который связан с экономикой крылатых монорельсовых поездов на воздушной подушке, а остановимся лишь на некоторых факторах.

Экономичность любого вида транспорта существенно определяется его энергетическими затратами. В бесколесных поездах энергия расходуется на создание тягового усилия и на поддержание поезда во взвешенном состоянии над поверхностью монорельса, в данном случае на создание воздушной подушки.

Энергозатраты первого вида зависят от сопротивления движению и увеличиваются пропорционально квадрату роста скорости. Затраты этой энергии будут максимальными на режимах наибольшей скорости. Так как скорость монорельсовых поездов на воздушной подушке достигает 500 км/ч и более, то потребление энергии на преодоление сопротивлений при этих скоростях настолько велико, что дополнительное расходование энергии на создание воздушной подушки ставит под сомнение их экономическую целесообразность. Именно этот аргумент выдвигали противники поезда на воздушной подушке в 1960 г. Они не учитывали или не хотели учитывать эффект экрана и отвергали идею использования подъемной силы крыльев для снижения потребной мощности за счет разгрузки воздушной подушки. Более того, они утверждали, что крылья только создают дополнительное сопротивление и увеличивают вес.

Крыло действительно неэффективно при малых скоростях. В этом случае, для того чтобы получить достаточную подъемную силу, необходимы крылья больших размеров, а большие крылья увеличивают силу сопротивления и вес. Однако подъемная сила крыла возрастает пропорционально квадрату роста скорости. Поэтому отличительной особенностью крылатых поездов на воздушной подушке является улучшение его экономичности при высоких скоростях. Более того, при высоких скоростях воздушную подушку можно создавать за счет динамического напора набегающего воздуха, что улучшит экономические показатели поезда на воздушной подушке.

Автомобильный и железнодорожный транспорт требует дорог, стоимость которых весьма высока. Это объясняется большими динамическими воздействиями колес автомобилей на дорогу или тяжеловесных составов на рельсы. На стоимость дороги оказывают существенное влияние условия, в которых она прокладывается. Очень высока стоимость мостов, которая в первую очередь определяется воспринимаемыми нагрузками и от которых зависит долговечность дорожных сооружений.

Монорельсовая эстакадная дорога для крылатых бесколесных поездов на воздушной подушке выгодно отличается от автомобильных и тем более железных дорог. Она не нуждается в непрерывном ложе, так как эстакада раз-мещается на опорах, отстоящих на значительном расстоянии друг от друга. Секции эстакады и монорельс могут быть изготовлены в заводских условиях, а на месте лишь монтироваться. Из-за отсутствия динамических ударных нагрузок колеса на рельс монорельс и эстакаду можно изготавливать из относительно дешевого и доступного бетона. Вследствие аэродинамической разгрузки крылатого поезда монорельс в основном используется как направляющая. Поэтому запас прочности здесь может быть существенно меньшим, чем, например, при строительстве железных дорог, к тому же ширина монорельса и эстакады определяется габаритами скользящего шасси поезда. В результате все сооружение получается достаточно легким. Это существенно облегчает установку опор, монтаж эстакады и монорельса, особенно возведение мостовых переходов, и снижает их стоимость. В результате приведенная к одному километру стоимость эстакадной монорельсовой дороги для крылатых поездов на воздушной подушке оказывается значительно меньшей, чем автомобильной и железной дороги.

Особенности поезда на воздушной подушке позволяют создать очень легкую, надежную и экономичную конструкцию. В самом деле, поезд освобожден от ударных нагрузок, обычно создаваемых колесной группой. Если в качестве двигателя он использует линейный асинхронный двигатель, то энергия для его питания будет передаваться по контактному проводу, и запасаться топливом на весь путь не понадобится; если же он будет снабжен автономным, например реактивным, двигателем, дозаправка топливом на промежуточной станции не представляет проблемы. Значит, топливные баки не будут занимать много места. Не будет занимать полезный объем и обычно громоздкое колесное шасси. Поезд может иметь легкие колеса, предназначенные для его транспортировки на ремонтные и регламентные работы, но они занимают мало места и при движении убираются аналогично авиационным. Всё это делает конструкцию поезда весьма экономичной.